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Abstract

We build a system that samples an image by acting to minimise Free Energy,
and by doing so minimises the expected entropy of future world states. We test
firstly how the system acts to disambiguate between competing prior expecta-
tions of possible world states, and secondly to see if the system can replicate
a well known result in bistable perception. In the first case, the system was
sufficiently convinced by Kanizsa’s triangle to conclude it was looking at a tri-
angle. In the second, the system failed to reproduce the expected distribution
of percepts. We suggest that a full deep learning hierarchy might succeed where
our approximation did not, and make minor hypotheses about a suitably primed
subject’s likely points of foveation when presented with Kanizsa’s triangle.
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Introduction

Intelligence is a consequence of the laws of physics. This assumption drives much
of the modern endeavour to understand the brain and, by extension, intelligent
behaviour. It is one of the reasons that accounts of intelligence that purport to
offer a single explanation for a wide range of phenomena - perception, action,
consciousness - are so appealing. However, this appeal is why they should be
approached with a commensurate amount of caution.

This dissertation engages with one such account; Karl Friston’s Free Energy
Principle (FEP) [20][19][17]. The FEP has gained a great deal of traction over
the last decade, having grown out of the work of Hinton and colleagues in the
1990s [14][27]. It can be thought of a particular instance of Predictive Process-
ing (PP); the idea that brains are essentially prediction machines engaged in
inference on the causes of their sensory input [29]. This idea of perception as in-
ference can be traced back to Helmholtz [26], but Friston provides an ontological
reworking. He argues that the minimisation of Free Energy, whilst equivalent
to PP, is a result of the necessary minimisation of sensory entropy demanded
of every organised entity by virtue of its existence. The process thus emerges
from an imperative towards homeostasis, as described in the cybernetics of W.
Ross Ashby and others [2][3].

Friston’s account ties action into the same framework [23]. By minimising
Free Energy, organisms reduce the disparity between their expected sensory
input and what they actually experience. We will refer to this as surprisal, to
distinguish it from the propositional attitude of surprise. Organisms minimise
surprisal by either adjusting their expectations about the world to be more in
line with their sensory experience, or acting to adjust their sensory experience
so that it aligns with their expectations. This latter is called active inference
[23].

Active inference might also take the form of the organism seeking out sen-
sory data which will better disambiguate between competing gestalt expecta-
tions, rather than that which directly confirms a current expectation. ’Gestalt’
because we assume that there are certain sets of brain states that combine, over
multiple levels in the brain, the expectations connected with the various struc-
tural characteristics of what would be experienced as a unified object. Acting
effectively relies on the predictive models encoding counterfactual expecta-
tions about the relationship between action and sensory input, even if some
actions remain potential only. It has been argued that the phenomenal richness
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of our experience of any particular gestalt is bound up in the counterfactual en-
coding of sensorimotor contingencies [38][37]; what it is like for me to perceive
a die as square, for example, is a function of how I would expect my die-caused
sensory input to change were I to pick it up and turn it round. This rein-
forces links between the FEP and older ideas of embodiment and sensorimotor
contingency theory (SMC) [11].

To probe some of the claims the FEP, in this project we have built a Free
Energy minimising system that simulates the visual sampling of an image to dis-
ambiguate between competing prior expectations of what the system might be
looking at. Our aims were twofold: (A) to explore in depth how exactly a Free
Energy minimising system would act to disambiguate between competing prior
expectations, (B) to demonstrate whether the simplifications required to make
a computationally tractable model rendered the resultant system empirically
worthless. As a starting point, we have relied upon Friston et al Perceptions as
Hypotheses: Saccades as Experiments [22]. Where our model differs in imple-
mentation, we have made this clear, and our use of the model to investigate (A)
and (B) we believe to be unique.

We investigate (A) with respect to the simple case of Kanizsa’s Triangle (Fig.
3.1), demonstrating both a system which acts to confirm and a system which
acts to disconfirm the current hypothesis. There is a noticeable difference in
which parts of the image are foveated, which suggests the potential for empirical
follow-up. Our approach to (B) is to compare data from the model to a well
known result in bistable perception in humans; that the rates of alternation
between percepts follow a gamma distribution [8]. We initially attempt this
with respect to the classic Rubin’s Vase illusion (Fig. 3.5), and then on an
image constructed to be ambiguous from the point of view of our system, given
the simplifications we have made.

Chapter 1 outlines the necessary theoretical background to the project. It
includes a derivation of the main mathematics of the FEP from first principles,
and a short discussion which attempts to tie the mathematical results into a
larger conceptual framework. Chapter 2 outlines the specific implementation
of our system, and discusses what extra assumptions and simplifications were
made. Chapter 3 details the experiments run, and presents the results which are
most pertinent to the investigation. For both (A) and (B) it includes a succinct
discussion of the implications and limitations of the investigation, along with
recommendations for improvements.
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Chapter 1

Background: Free Energy

1.1 Introduction

The FEP [20][19][17] is a model of brain dynamics which considers the brain to
be fundamentally Bayesian, and purports to tie previous work on approximate
Bayesian inference into a larger framework which encompasses both action and
perception [23]. In doing so, it attempts to provide a unifying explanation
for psychological phenomena as diverse as attention and learning. This chapter
outlines the mathematical underpinnings of the minimisation which is at the core
of the approach, and follows with a brief, and hopefully somewhat illuminating
discussion.

1.2 Perception as Inference

The idea that perception can be thought of as inference on the causes of sensory
data can be considered to originate with Helmholtz [26]. For an organism to
successfully interact with the world, it must have a model of the world which
is at least good enough to capture the statistics of those world states W which
directly affect the organism. However, the states of the world are hidden from
the organism, which only has access to its sensory data S.

This means that a complex organism’s brain must maintain a generative
model; i.e. a model of how supposed world states generate sensory data, which
can then be inverted to infer the state of the world ω (ω ∈W ) given some sensory
data s (s ∈ S). This inversion can then be used to update the generative model
such that the posteriors of earlier experiences form the priors of later ones. In an
ideal world, this inference would be performed according to Bayes’ Rule (1.1),

p(ω|s) =
p(s|ω)p(ω)

p(s)
(1.1)

where the posterior probability of some world state given some sense data is
computed from the likelihood of that sense data given that world state and the
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prior probabilities of both world state and sense data.
It should be noted that this proposed inference is statistical; the brain is

representing the world and the potential inputs from the world as probability
densities over possible states. This arises naturally from the fact that the brain
is selecting from multiple competing hypotheses presented by an inverse model
which is itself only as good an approximate as previous sensory experience allows
it to be. The generative model can therefore be thought of as being represented
by the brain in the generative density

p(ω, s) (1.2)

i.e. the joint density of world states and sensory states. Interestingly, one of
the assumptions Friston makes in deriving a method of approximate inference is
that organisms treat the world itself as essentially deterministic; it is organisms’
subjective representations of world states which are treated as probabilistic. We
will return to this in a moment.

The problem with ideal Bayesian inference, under Friston’s account [20], is
that the prior p(s) is difficult, if not generally impossible, to compute. p(s) can
be extracted from the generative distribution by marginalisation:

p(s) =

∫
p(ω, s)dω (1.3)

or equivalently,

p(s) =

∫
p(s|ω)p(ω)dω (1.4)

which involves integrating over all possible world states. This integral is likely
to be analytically intractable due to the complexity of the world. In addition, it
is also empirically intractable simply because an organism cannot access hidden
world states W .

1.3 Introducing Free Energy

This means that we need a tractable approximation to ideal Bayesian inference.
There are several ways to do this, but the method Friston extends is the Vari-
ational Bayes approach developed by Hinton and colleagues in the 1990s for
several machine learning tasks [14][27].

Let us assume that the brain also encodes a second density, q(ω), which is
its best current approximation to the true posterior density p(ω|s) from (1.1).
Let us call this density the recognition density, and assume the brain acts to
minimise some measure of the difference between it and the posterior. Finally,
let us assume that this measure is the Kullback-Leibler divergence [12] between
the two distributions, namely (1.5).

DKL =

∫
dωq(ω) ln

q(ω)

p(ω|s)
(1.5)
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By noting that

p(ω|s) =
p(ω, s)

p(s)
(1.6)

and using the facts that ln(AB) = ln(A) + ln(B), and
∫
dωq(ω) = 1, we can

rewrite (1.5) as

DKL =

∫
dωq(ω) ln

q(ω)

p(ω, s)
+ ln p(s) (1.7)

where the first term is the Kullback-Leibler divergence between the recognition
density and the generative density (1.2) and the second term is the log probabil-
ity of the sensory data. As discussed, p(s) is intractable, which means the second
term is impossible for the organism to minimise. However, the divergence term
can be minimised. It is this information-theoretic quantity with which we shall
concern ourselves for the rest of this report. We will call it ’Free Energy’, or F .

F =

∫
dωq(ω) ln

q(ω)

p(ω, s)
(1.8)

Free Energy has two important properties which should be derived straight
away. Firstly, it is a tight upper bound on surprisal − ln p(s), the measure of
how unexpected some particular sense data is. Secondly, it can be written as
the ’Energy’ (an information-theoretic object to be defined below (1.11)) of the
generative density averaged over the recognition density minus the (Shannon
[39]) entropy of the recognition density. This second property underpins an
intuitive parallel with thermodynamics [7], and provides us with a heuristic to
understand Free Energy.

As with our transformation from (1.5) to (1.7), we can rearrange (1.8) as
follows:

F =

∫
dωq(ω) ln

q(ω)

p(ω, s)

=

∫
dωq(ω) ln

q(ω)

p(ω|s)p(s)

=

∫
dωq(ω) ln

q(ω)

p(ω|s)
− ln p(s)

F ≥ − ln p(s)

(1.9)

The final step holds because the first term in the third line is the Kullback-
Leibler divergence between two probability densities, which is always positive
[12]. This means that F is an upper bound on surprisal. It is a tight bound
because when the divergence between q(ω) and p(ω|s) is zero, i.e. the brain’s
approximation to the posterior exactly matches the true posterior, then Free
Energy will equal surprisal. As it is an upper bound on surprisal, minimising
free energy will minimise surprisal.

Under Friston’s account, minimising surprisal is something that organisms
are bound to do by virtue of their existence [19]. This is because Friston assumes
a priori that for an organism to remain a functioning entity it must minimise
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the entropy of the environments it finds itself in. To do this, it must minimise
the entropy of its sensory states, with respect to action. Fishes which find
themselves in a (for them) surprising environment, such as on land, rapidly cease
to be functioning fishes. Under ergodic assumptions, the long term average of
surprisal converges to the entropy (i.e. the ensemble average of surprisal):

H(S) = −
∫
p(s) ln p(s)ds

= lim
T→∞

∫ T

0

− ln p(s)dt

(1.10)

This means that acting over time to minimise surprisal (or, as is actually the
case, some approximating upper bound to surprisal) minimises the entropy of an
organism’s external states. Thus according to Friston, minimising Free Energy
not only allows an organism to more tightly model its external environment,
but also fulfils an intrinsic requirement of survival.

The second property of Free Energy, which brings out parallels to thermody-
namics, can be shown firstly by defining a second information-theoretic quantity
’Energy’, as

E(ω, s) = − ln p(ω, s) (1.11)

and then rearranging (1.8) and substituting.

F =

∫
dωq(ω) ln

q(ω)

p(ω, s)

=

∫
dωq(ω) ln q(ω)−

∫
dωq(ω) ln p(ω, s)

=

∫
dωq(ω) ln q(ω) +

∫
dωq(ω)(− ln p(ω, s))

=

∫
dωq(ω) ln q(ω) +

∫
dωq(ω)E(ω, s)

= −ENTROPY +AV ERAGE ENERGY

(1.12)

It is this rearrangement that provided Hinton and colleagues with the motivation
to call the quantity we are minimising ’Free Energy’, and − ln p(ω, s) ’Energy’
[14][31]. This is because in physics, the thermodynamic potential Helmholtz
Free Energy, A, of a thermodynamically closed system is defined as

A = U − TS (1.13)

where U is the internal energy of the system, T is its absolute temperature, and
S is its (thermodynamic) entropy [7]. The parallel with the final line of (1.12)
is clear if we set T = 1.

In physics, Helmholtz Free Energy is a measure of the energy of a system
available to do ’useful’ work. We can think of our information-theoretic parallel
in a similar way, if we think of ’useful’ in terms of modelling the environment.
As will become clear later, minimising free energy under a few straightforward
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assumptions equates to minimising the difference between our model predictions
and the evidence. This means that when Free Energy reaches a minimum, we
have effectively maximised the log model evidence, and the brain’s model is as
good as it can be. In the ideal case that Free Energy reaches 0, the brain’s model
would be exact; although the simplifying assumptions we make about the form
the brain’s model can take renders this impossible in realistic environments.

Some caution should be urged when thinking of Free Energy in this way. This
is an intuitively appealing parallel; it is not clear that there is a direct physical
interpretation of the information-theoretic quantities so defined. Rather, it is a
useful heuristic which helps us to think about what minimising Free Energy is
doing, with respect to the brain’s efforts at approximate Bayesian inference.

1.4 How the Brain Encodes World States W

An important issue is how the brain encodes the hidden states of the world as
part of the recognition density q(ω) and the generative density p(ω, s), given
that all the brain has access to are sensory data S. We shall consider the issue
with respect to the recognition density q(ω), and derive an expression for F .

Friston’s first major assumption is that the recognition density can be fac-
torised into several approximately independent sub-densities[10]. This is be-
cause world states are assumed to be factorisable into multiple subsets ωi, i =
1...N , each corresponding to a distinct time-scale τ1 < τ2 < ... < τN .

q(ω) =

N∏
i=1

qi(ωi) (1.14)

In his complete model, Friston proposes three distinct timescales that, from
shortest to longest, represent neuronal activity, synaptic efficacy/plasticity, and
synaptic gain respectively.

In the full model, N > 1, the distribution of a particular sub-density i can
be shown to depend upon its ’partially averaged energy’ Ei(ωi, s)[18], which
is the Energy, − ln p(ω, s), with the contributions from all other sub-densities
averaged out. This means

q∗i (ωi) =
e−Ei(ωi,s)∫
dωie−Ei(ωi,s)

(1.15)

where the * indicates this is the optimal recognition density at this timescale,
selected from an ensemble of recognition densities. This is reminiscent of the
Boltzmann distribution in statistical physics [7]. However, in our model of
saccadic behaviour, we will be concerning ourselves with the specific case where
N = 1, i.e. the case of a single timescale, which we will assume corresponds
to neuronal activity. This means that for us, partially averaged energy just is
energy, and the optimal recognition density is directed to the posterior when
the Free Energy is minimised.
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Our second major assumption is that the brain models the world as having
a Gaussian form:

qi(ωi) ≡ Gi(ωi;µi, σi)

=
1√

2πσi
e

−(ωi−µi)
2

2σi

(1.16)

where µi, the mean, and σi, the variance, are the sufficient statistics of the
distribution. This is the Laplace approximation, and can be justified by both
appeal to the maximum entropy principle [20] - that a Gaussian distribution
has the maximum entropy of all form that can be specified by two moments -
and the central limit theorem, which states that a statistical system with large
degrees of freedom (such as the world) would admit a Gaussian distribution [12].

By modelling the states of the world as Normally distributed, the brain only
has to encode the sufficient statistics of those distributions. A further simplifying
assumption (see below, p9) permits the brain to discard σi, meaning that the
recognition density simply becomes a function of the expectations, µi, encoded
by particular brain states. This allows the formulation of Free Energy in terms
of brain states, rather than hidden world states. In this form, the brain can act
to minimise Free Energy.

Recall that the free energy can be decomposed into an entropy term and an
average energy term (1.12).

F =

∫
dωq(ω) ln q(ω) +

∫
dωq(ω)E(ω, s) (1.17)

We now assume that the Gaussian form of q(ω) is sharply peaked. In other
words, that the distribution approaches a delta function. This means that we
are assuming that the brain models the world via the recognition density as
being determined, rather than probabilistic; that the variance of states in the
world is minimal, at least with respect to their means [24]. This is not to be
confused with the variances of the generative model, which encode how reliable
the brain thinks its own expectations are. These variances are not necessarily
minimal, and in Friston’s model enact the role of attention[28]. More on this
later (1.9).

This assumption allows us to perform a Taylor expansion of E(ω, s) in the
second term around {µi} = {ωi}:∫

dωq(ω)E(ω, s) ≈
∫
dωq(ω)

{
E(µ, s) +

∑
i

[ ∂E
∂ωi

]
µ
δωi +

1

2

∑
i,j

[ ∂2E

∂ωi∂ωj

]
δωiδωj

}

= E(µ, s) +
1

2

∑
i

[ ∂2E
∂2ωi

]
σi

(1.18)
Here the first order terms vanish, and only the diagonal terms of the second
order terms are non-zero [10]. Friston introduces a second simplification by
assuming that the variances are optimal [24], which means we can vary Free
Energy with respect to σi. As it turns out, this allows us to write ∂2E/∂2ωi
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purely in terms of σ∗i , which means that F , when (1.18) is substituted into
(1.17),

F =

∫
dωq(ω) ln q(ω) + E(µ, s) +

1

2

∑
i

[ ∂2E
∂2ωi

]
σi (1.19)

can be seen to be comprised of two terms which only depend on the variance,
σ∗i , and the energy term, E(µ, s). This is because the entropy of a Gaussian
distribution (the first term) depends only on its variance [12]. Hence, given
we have assumed the variances to be small and optimal, with respect to the
minimisation we can discard the first and third terms of (1.19).

We now have a model of how Free Energy is encoded by the sufficient statis-
tics, µ, of the Gaussian form assumed for the recognition density. Furthermore,
we assume that µ are representations of the hidden world states that cause sen-
sory data, and are reflected in brain states. The Energy term in this encoding is
referred to as ’Variational Energy’ [10], E , and differs from the Energy E (1.11)
by a constant in the case of multiple time scales. In our model, there is only
a single time scale, but we will retain the nominal distinction to highlight that
the variational energy is a function of µ, rather than of ω:

E(µ, s) = − ln p(µ, s) (1.20)

where p(µ, s) is the Laplace-encoded generative density, i.e. the brain’s model of
the relationship between sense data s and its own states µ, which represent hid-
den states in the world ω. In this form, the generative density is now accessible
to the brain, and can be used to minimise Free Energy.

1.5 Minimising Free Energy

Friston’s working assumption is that for any particular brain state, µi, the brain
updates µi by straightforward gradient descent with respect to the Free Energy
surface. This is both computationally tractable and biologically plausible [20].

µ̇i = −κi
∂F

∂µi

= −κi
∂E
∂µi

(1.21)

Where κi is a learning rate. Here the second line holds because as we have
shown (Section 1.4), only the variational energy E depends upon µ, and so
varying F with respect to any µi is equivalent to varying E with respect to that
µi. Technically, when we consider dynamical models, there is an additional µ′

term, but we will discuss this below (p13, (1.39)).
This means that to build a program that minimises free energy, we simply

have to specify a generative process GP , which describes how sense data is ac-
tually generated by the world, and a generative model GM , which describes the
brain’s model of how sense data is generated with respect to its expectations.
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This latter allows us (under specific assumptions) to specify E in terms of predic-
tion errors, and thence compute µ̇i. Integrating the system numerically drives
it towards a local Free Energy minimum, and drives the recognition density to
a close approximation of the true posterior.

To illustrate the encoding of the generative model GM , let us first consider
the simplest case.

s = g(µ) + v

µ = µ̄+ z
(1.22)

Here, some sense data s is modelled by some function of the brain state µ, plus
some noise, whilst µ itself varies around an expected value of µ̄. For simplicity,
let us assume s and µ are scalar values. We assume that v and z are normally
distributed, which allows us to specify the form of the distributions when we
run the generative processes around the means g(µ) and µ̄:

p(s|µ) =
1√

2πΩv
exp
(−(s− g(µ))2

2Ωv

)
p(µ) =

1√
2πΩz

exp
(−(µ− µ̄)2

2Ωz

) (1.23)

Recall (1.20) the definition of the variational energy, E(µ, s) = − ln p(µ, s). As
p(µ, s) can be written as p(s|µ)p(µ), (1.23) can be substituted into (1.20). With
a simple manipulation this yields, up to a constant,

E(µ, s) =
1

2Ωv
ε2v +

1

2Ωz
ε2z +

1

2
ln(ΩvΩz) (1.24)

where

εv = s− g(µ) (1.25)

εz = µ− µ̄ (1.26)

Minimising E with respect to µ, we can see that it is effectively the error terms,
εv and εz, that are driving the minimisation. This makes sense; the errors can
be thought of as indicative of how close the system’s current model is to the
sense data it is attempting to model. Due to how we have defined variational
energy we can see that under Gaussian assumptions, the prediction errors are
literally the surprisal, i.e. the negative log probability, associated with that
particular sensory input under our current generative model.

These errors are weighted by the inverse variances - the precisions - of the
model. This means that the minimisation will be primarily driven by those
parts of the model with the largest precisions; i.e. those errors in which the
system (or the brain) has most confidence. For Friston, this precision weighting
can be thought of as attention [22]; it picks out those parts of the sensorium
with respect to which the system is trying to minimise Free Energy, either by
perception or action, at any point in time.
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There are two main improvements to the simple model which will now be
discussed. The first of these is extending the model to the dynamic case, i.e.
where the brain or system models the evolution of its own states over time.
Consider the system,

s = g(µ) + v

ds

dt
=
∂g

∂µ

dµ

dt
+ v̇

µ = µ̄+ z

dµ

dt
= f(µ) + x

(1.27)

where the first order time derivatives of s and µ are also considered. In general,
Friston considers all temporal orders [17], so that s and µ are replaced by s̃ and
µ̃ where

s̃ =
(
s,
ds

dt
,
d2s

dt2
, ...,

dns

dtn

)
=
(
s[0], s[1], s[2], ..., s[n]

) (1.28)

and

µ̃ =
(
µ,
dµ

dt
,
d2µ

dt2
, ...,

dnµ

dtn

)
=
(
µ[0], µ[1], µ[2], ..., µ[n]

) (1.29)

where n = ∞. In this case, the system outlined in (1.27) would have infinitely
many equations, two at each dynamical order, which would provide a generalized
map in the case of s̃, and generalized equations of motion in the case of ˙̃µ, where
µ[0] is ignored because we assume that the precision of z is very low; we assume
that the system has no expectations about its own state at any particular point
in time, only about the way that state will evolve over time. We also assume
that only linear derivative terms are collected at any dynamical level; Friston
refers to this as the ’local linearity assumption’ [25].

For our purposes, however, the system in (1.27) is adequate - the infinite di-
mensional model with full generalized co-ordinates s̃ and µ̃ would be impossible
to code without some truncation of higher order dynamics. We take s̃ = {ṡ, s}
and µ̃ = {µ̇, µ}, and as with simple system (1.22) rewrite the generative distri-
bution of which the variational energy is a function as follows:

p(s̃, µ̃) = p(s̃|µ̃)p(µ̃)

= p({ṡ, s}|{µ̇, µ})p({µ̇, µ})
= p(ṡ|µ̇)p(s|µ)p({µ̇, µ})
= p(ṡ|µ̇)p(s|µ)p(µ̇|µ)p(µ)

(1.30)

The third line holds because we are assuming that dynamical levels are them-
selves independent; this is a necessary consequence of the assumption of local
linearity. This means that we take it to be the case that the sensory data at a
particular dynamical order n only interacts with, and is represented by, brain
states of the same dynamical order, µ[n]. Finally, as mentioned, we ignore µ[0]

and thus discard p(µ). This gives us

E(µ̃, s̃) = − ln
[
p(ṡ|µ̇)p(s|µ)p(µ̇|µ)

]
(1.31)
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As with the simple system, we assume the noise terms v̇, v, z are normally
distributed, and run the generative processes in (1.27) around their respective
means to derive expressions for the contributing probabilities in terms of the
errors and their variances.

p(ṡ|µ̇) =
1√

2πΩv̇
exp
(−(ṡ− ġ(µ̇))2

2Ωv̇

)
p(s|µ) =

1√
2πΩv

exp
(−(s− g(µ))2

2Ωv

)
p(µ̇|µ) =

1√
2πΩx

exp
(−(µ̇− f(µ))2

2Ωx

) (1.32)

Here,

ġ(µ̇) ≡ ∂g

∂µ

dµ

dt
(1.33)

and for higher dynamical orders n (with which we are not concerning ourselves),

g[n] ≡
∂g

∂µ

dnµ

dtn
(1.34)

Substituting into (1.31) results in the following expression for the variational
energy,

E(µ, s) =
1

2Ωv̇
ε2v̇ +

1

2Ωv
ε2v +

1

2Ωx
ε2x +

1

2
ln(Ωv̇ΩvΩx) (1.35)

where

εv̇ = ṡ− ġ(µ̇) (1.36)

εv = s− g(µ) (1.37)

εx = µ̇− f(µ) (1.38)

which can then be minimised with respect to µ and µ̇. This removes the final
term of (1.35), again yielding an expression in terms of the errors weighted by
their respective precisions.

There is one final nuance in the dynamical minimisation. Note that the
straightforward minimisation by gradient descent described in (1.21) is not
guaranteed to reach a minimum, as the µ̇[n] term (µ[n+1]) is already part of
the generalised co-ordinates defined by µ̃, as is µ[n]. To get around this, we
introduce a second term, µ′[n], which can be thought of as the brain’s represen-

tation of the next dynamical order up[24]. It is a time derivative not necessarily
equal to µ̇[n] Thus,

µ̇[n] = µ′[n] − κ[n]
∂F

∂µ[n]
(1.39)

is guaranteed to reach a local Free Energy minimum. If we think about it,
this makes sense; ∂F/∂µ[n] = 0 when µ̇[n] = µ′[n]. This states that when the
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brain’s model of the evolution of the state of some dynamical level is equal to
the actual evolution of the state of that dynamical level, then the Free Energy
is minimised, with respect to that dynamical level. As we have discussed (Sec
(1.3)), Free Energy is a proxy to our measure of the difference between our
brain’s model of the hidden states of the environment which cause sense data
and the true posterior (i.e. true distribution) of those hidden states. Thus, if
our model is exact, with respect to some dynamical level, Free Energy should
necessarily be minimised with respect to that level, which the µ′[n] term enforces.

The second main improvement to the simplistic model is to make it hierar-
chical. As will become clear in Chapter 2, our model of saccades approximates
the action of minimising Free Energy across this hierarchy, rather than being
explicitly hierarchical - we concern ourselves only with the lowest level of the
hierarchy. However, we will provide a brief overview of the ideas behind the hi-
erarchical model, as this is important to an understanding of the full dynamical
hierarchical GM , and its claims to model the brain.

The mathematical motivation behind the hierarchy is to reduce the con-
tribution of the prior p(µ) to the generative distribution p(s, µ) to a minimum,
which allows us to consider it simply as a noise term, and of minimal importance.
Accounting for the priors of the generative model is one of the main practical
problems faced by Variational Bayes approaches to approximate Bayesian infer-
ence (of which Free Energy minimisation is an instance).

Let us divide the brain state µ into multiple sub-states {µ(1), µ(2), µ(3), ..., µ(M)},
so that we can rewrite the generative distribution as

p(s, µ) ≡ p(s, µ(1), µ(2), µ(3), ..., µ(M))

= p(s|µ(1), µ(2), µ(3), ..., µ(M))p(µ(1), µ(2), µ(3), ..., µ(M))

= p(s|µ(1))p(µ(1)|µ(2)) ... p(µ(M−1)|µ(M))p(µ(M))

(1.40)

The final line assumes that the sub-states are conditionally independent of one
another. We can usefully think of this as representing a hierarchical system
where each µ(i) corresponds to the state of the ith level, and we have made
a Markov[16] assumption so that the contributions to the probability of any
level can be defined just in terms of the level above. This means the posterior
probability of any particular level acts as the prior probability of the level below.
To make this explicit, we have written the hierarchical system below:

s = g(1)(µ(1)) + v(0)

µ(1) = g(2)(µ(2)) + v(1)

.

.

µ(M−1) = g(M)(µ(M)) + v(M−1)

µ(M) = v(M)

(1.41)

Here we can see that the lowest level models the sense data (which can be
thought of as µ(0)) directly, and each level above attempts to model the sufficient
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statistics of the level below. At the top level µ(M), now a minor contributor as
the final prior of the system, is simply noise. As ever, we assume each noise
term v(i) is Gaussian in form, and this means that we can write the generative
density, and thus the variational energy, in terms of the errors between the
expectations of the (i+ 1)th level, g(i+1)(µ(i+1)), and the actual state of the ith

level, µ(i). In practice this means that errors rise up the hierarchy, and priors
flow down.

To combine the dynamical and hierarchical models into a full generative
model, Friston assumes that the hidden states of the world, W , can be divided
into causal and dynamic states, W = V ×X [20]. These are modelled by brain
states µv and µx respectively. This separation allows us to think of causal states,
µv, as those which contribute to the inter-layer dynamics. These are the states
that the functions g(i) attempt to model, such that

µ̃(i)
v = g̃(i+1)(µ̃(i+1)

v , µ̃(i+1)
x ) + v(i) (1.42)

where the tildes indicate that there is an equivalent function at every dynamical
level, which we have assumed to be independent (see (1.30)). Conversely, the
dynamic states, µx, are those which contribute to intra-layer dynamics, i.e. the
brain’s attempt, by f (i), to model the generalized motion of its own dynamics
at that hierarchical layer.

˙̃µ(i)
x = f̃ (i)(µ̃(i)

v , µ̃(i)
x ) + x(i) (1.43)

By assuming the v(i) and x(i) noise terms are normally distributed, this allows
for a complete determination of the variational energy, which is then minimised
with respect to each brain state by gradient descent. We can think of the
variational energy as a surface above all brain states (µi ∈ R), where the brain
attempts to find a local minimum by updating brain states accordingly. This
corresponds to perception; action requires the provision of a forward model,
which we discuss briefly below.

1.6 Action as a Result of Minimisation

Thus far, we have described a hierarchical system in which sensory data is an
uncontrollable input to the bottom layer. By changing brain states to minimise
free energy and thus select the brain state which corresponds to a model of a
possible world state for which the log sensory evidence is then maximised, the
system perceives its environment. However, this does not by itself guarantee the
minimisation of the surprisal (and thus by ergodic assumptions, the entropy).
All that the organism can do by perception is tighten the Free Energy bound on
the surprisal associated with a particular sensory state. To truly minimise the
entropy of its sensory input, an organism must interact with its environment
to change that sensory data directly (in the simplest case, it should be able
to move). For Friston, this action can also be derived from the Free Energy
minimisation [22].
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To make sense of this claim in the context of our discussion, recall (1.9)
our demonstration that the Free Energy, F , the divergence between the recog-
nition distribution q(ω) and the generative distribution p(ω, s), can be written
as the divergence between q(ω) and the true posterior p(ω|s) plus the surprisal
− ln p(s). When we are perceiving, it is this divergence between q(ω) and p(ω|s)
that is being minimised.

However, we can also rearrange F as follows:

F =

∫
dωq(ω) ln

q(ω)

p(ω, s)

=

∫
dωq(ω) ln

q(ω)

p(ω)
−
∫
dωq(ω) ln p(s|ω)

(1.44)

Friston characterises this as ’Complexity minus Accuracy’ [23], but it is the ’Ac-
curacy’ term with which we are most concerned. This can be thought of as the
conditional surprisal averaged across the recognition distribution q(ω), or equiv-
alently, as the expected surprisal under some recognition distribution. Under
Gaussian assumptions, as we have shown, this becomes simply the prediction
error. If the agent can act to affect sensory data, then assuming it strives to
minimise Free Energy, it will act to drive sensory states closer to its conditional
expectations.

According to Friston, this minimisation occurs close to the boundary between
the body and the world; when the priors which are flowing down the system
take the form of expectations about proprioceptive sensations[23]. At this level,
minimising Free Energy involves minimising proprioceptive prediction errors;
whilst this can be done by altering the predictions, it can also be achieved
by altering the proprioceptive sensations themselves. Friston hypothesises that
this is effectively achieved by equipping the generalized predictive coding scheme
with classic reflex arcs[22].

At first glance, this ’Active Inference’ seems highly counter intuitive. Under
this hypothesis there are no top-down motor commands. Rather, there are
simply expectations about proprioceptive input which the body then acts to
satisfy - we expect our hand to grasp a cup, and so it does. The motor commands
are the proprioceptive errors; action occurs to minimise these errors. However,
some thought will convince us that we have already implicitly accepted this if
we have accepted the Free Energy account of perception; in the complementary
problem of perceiving, the upflow of sensory data through our brain has no direct
bearing our experience. All that flows up through the brain are the instructive
error signals, which are decomposed across the hierarchy. What we perceive are
those top down representations which best explain away our sensory input.

We take sense data to be a function of action, and thus assume we can
minimise F with respect to action by gradient descent.

ȧ = −κa
∂F

∂a

= −κa
∂F

∂s

∂s

∂a

(1.45)
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Where the second line holds by the chain rule because sensory states are a
function of action, and ∂F/∂s can be thought of as the error at the lowest level
of the hierarchy:

ε(1)v = (µ(0) − g(1)(µ(1))) (1.46)

The full FEP model, therefore, sees the brain-body system performing a dual
minimisation of Free Energy with respect to action and perception:

µ(t)∗ = argmin
µ

F (s(t), µ(t))

a(t)∗ = argmin
a

F (s(t), µ(t))
(1.47)

where * indicates the optimal brain state, in the case of µ, and optimal action,
in the case of a.

This is compelling. By proposing an overall directive - that an organism
minimise Free Energy - we have shown that two of the most fundamental con-
tributors to intelligence both arise from the same process. Action and percep-
tion appear dissimilar because the process of minimising Free Energy is being
embodied in different physical contexts. The structure of the body and the
central nervous system mean that proprioceptive prediction errors can be min-
imised through an active forward model. Deeper within the brain, prediction
errors are minimised by altering brain states, which corresponds to selecting
those prior expectations which best explain away the errors rising through the
hierarchy.

1.7 Decomposing Error Signals

It is perhaps helpful to step back at this point, and consider the Free Energy
Principle from a more abstract standpoint.

Firstly, it should be noted that at any hierarchical level i the levels above
are all combining to perform inference on the level (i − 1); as far as they are
concerned, the (i − 1)th level could be the sensory input from the world. This
is a result of the Markov assumptions we have made in creating the hierarchy
- in practice it means that we can think of each set of upper levels {i...M}
as embodied within a ’world’ only accessible by the statistics of the state of
the (i − 1)th level. When (i − 1) = 0, then this ’world’ is the real world: the
environment external to the system.

We can think of the hierarchy as decomposing the sensory input across its
levels; in a way analogous to Fourier decomposition’s division of a signal into
the contributions from its various frequencies [9]. As we are minimising the
negative log of a product of probability distributions we have assumed to be
Gaussian, this decomposition is also subtractive. Instead of frequencies, the
hierarchy decomposes the incoming signal into a set of statistical structures in
the log domain, each of which corresponds to the predictions of a particular
level, g(i). These structures can further possess their own dynamics, which the
brain models by f (i). Each level subtracts away that part of the error signal
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which it correctly models, and the remaining error is passed to the higher levels.
We could say the brain decomposes a signal into a ’concept’ domain.

This us a better insight into what it means for us to treat the top prior of
the model, p(µ(M)), as Gaussian noise. By not modelling the error remaining at
the top of the hierarchy (see (1.41)), we are effectively ignoring any structures
remaining in the signal after it has passed through the brain. This remnant can
be thought of as the unexplained surprisal in sensory states.

In reality, the brain is always going to be unable to fully model the sensorium;
the world is far more complex than our brain’s capacity to model it. If the
brain does indeed enact some form of Variational Bayes, the maximum possible
complexity of its model of world states can be seen to be a function of the depth
of the hierarchy, and the structure of the generative functions f and g at each
level. We could think of this in evolutionary terms; if an organism’s model
cannot capture the full complexity of the incoming sense data, then it must at
least capture those structures in the sense data that correspond to states of the
world that will directly affect the organism’s survival. Dismissing the remaining
error as Gaussian noise is not to say, therefore, that this remaining sensory
input lacks structure, or fails to describe certain parts of the world. Rather, the
organism is assuming that this input is not relevant with respect to the current
demands of survival, and so can be treated as noise. Whilst surprising, it is not
dangerously so.

This final noise term also acts as a buffer against over-fitting. The constraints
of a finite hierarchy with respect to the complexity of possible models enact
a real-world structural example of the classic bias-variance trade-off (see, e.g.
[36] p705). By not perfectly accounting for sensory input, the brain avoids a
high variance regime which would minimise surprisal in the moment, but might
well fail to predict a future event which could be catastrophically surprising.
Evolving some level of complexity allows the brain to avoid a high bias regime,
in which it is incapable of building models complex enough to be useful. In
short, we can see the structure of the brain as a sophisticated balancing act
evolved under the straightforward constraint of minimising average surprisal
over time, which under ergodic assumptions is equivalent to minimising the
entropy of sensory data (1.10). We are effectively adding a regularization term
to our model. Our first expectation is about the model itself; the topmost layer
predicts that the layers below will explain away just those parts of the world
which are necessary to survive in the present, and that what remains can be
treated as Gaussian noise.

1.8 The Dark Room Problem

As we have discussed, for any particular level i, the (i−1)(th) level could be the
sensory input from the world. We can turn this on its head; as far as the i = 1
level is concerned, the actual sensory input s could just be the error signal from
lower levels of a larger hierarchy. In other words, we can think of sensory input
itself as an error signal. Rather than being an instructive input, sensory data is
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then the error created by our interactions with the world. For Friston, this leads
to the conclusion that we tend to act to confirm, rather than disconfirm, our
expectations of the world. For Friston’s opponents, this is more problematic. It
highlights the fact that minimal surprisal - i.e. the minimisation of Free Energy
- could be most readily achieved by sitting in a room with the lights off and
staring at the wall [35].

This ’dark room’ problem is not the focus of this dissertation. For the inter-
ested reader we recommend Andy Clark’s review paper, and the commentaries
as a good place to start [13]. Here, we will briefly highlight what can be seen as
the main rebuttal; that the brain has evolved to minimise long term surprisal, to
maximise its survivability. This means that the nature of the world has trained
us to expect things like light, and movement. This is because the reduction of
surprisal gained by switching the lights off, or staying in dark places, has been
outweighed in the long term by the enormous (and quite possibly terminal)
increase in surprisal when a predator sneaks up on us [20].

In short, we minimise long-term surprisal with respect to our embodiment in
a particular environment. We are able to do so accurately because we have been
structured to do so by the pressures of natural selection. Even if we chose to sit
in a darkened room for a prolonged period of time, the sub-environment of our
body would eventually begin to make interoceptive demands on the higher levels
of the nervous system (we might begin feeling hungry), which would percolate
upwards as errors to be minimised by priors that would flow down the hierarchy
and manifest as action at the lowest levels. We would get up and find food.
This might require us to turn the light on.

The idea that we act to confirm our expectations follows, for Friston, directly
from the idea that we select the action which most minimises Free Energy
[20]. In the dual minimisation discussed at (1.47), by minimising Free Energy
we act to minimise the surprisal between our model and the sensory input.
Assuming that the system has some forward model of how actions bring about
sensory input, and some current state of expectations about the world, then
we act to bring our sensory experience in line with those expectations, rather
than acting to disambiguate or check for evidence against a current hypothesis
about the world. However, as we will explore, modelling expected future (i.e.
counterfactual) surprisal can lead to disambiguatory actions.

1.9 Attention and Consciousness

Finally, thinking of perception as inference allows us to sketch a tentative hy-
pothesis concerning what exactly comprises conscious experience. Under a pre-
dictive coding scheme, the inference on the causes of sensory data at any partic-
ular point in time is essentially the set of current brain states {µ(1)...µ(M)} that
are best able to explain the sensory data s. We can think of this total brain
state, or some part of it, as giving rise to the conscious experience associated
with a particular percept or gestalt. What it is like for me to see a red ball
is what it is for me to be in the brain state that corresponds best to that par-
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ticular inference (’Nagel’s oft worn phrase’: a mental state is conscious if there
is something it is like for me to possess it [32]). If the ’Red Ball’ prior results
in the best minimisation of Free Energy throughout the hierarchy, given some
sense data, then my brain will alter its state towards that which corresponds to
that particular prior, and I will have a conscious visual experience of a red ball.

The FEP also provides a neat response to the Binding Problem [4]; why it is
that the redness and roundness of the ball are phenomenally unified, even though
they are processed in different parts of the brain, and at different timescales [40].
If we think of percepts as the result of our priors, then binding happens before
sensation. We assume that there is a red ball in the world, and by virtue of
doing so high-level expectations provide us with the unified phenomenological
experience of a red ball. These priors then flow down the system, in the form of
predictions about expected sensory input. If these predictions fail to be satisfied,
the upflow of errors may modify the higher priors, and the character of our
experience will change with our brain state. Rather than having to provide an
account of some unifying mechanism that knits disparate sensory information
together as it spreads through the brain, we have instead an account whereby
objects are unified by virtue of us seeing them as objects.

The Free Energy framework also claims to explain attention; that sense that
there are certain features of our experience at any particular moment of which
we are more fully conscious than the rest. For example, when we attend to
a particular aspect of a visual scene, such as a single tree in a forest, the tree
dominates our conscious experience (common consensus, e.g. [15], 29/30, is that
we are still conscious of the rest of the forest).

For Friston, attention can be thought of as a result of the precision weighting
of error signals [20]. Weighting the error by our confidence in a particular part
of the generative model drives the minimisation more with respect to that par-
ticular error. This has two effects. Firstly, we will be driven to act to minimise
the largest error. This supports the view of attention as selection for action -
those features in the world to which we are attending are those we are most
likely to interact with. Under the FEP account, this is because attention is just
precision weighting of the errors associated with the brain states which model
those features. Secondly, heavily weighting an error from a particular level in
the hierarchy means that higher levels in the hierarchy will select their states,
µ(i), to best explain away that error. This means that a greater proportion
of total brain states {µ(1)...µ(M)} will be representing that particular part of
the world in which we have high confidence. If our phenomenal content can
be described in terms of our particular brain state, then it follows that if a
large proportion of our brain state at time t is representing a particular part of
the world, our perception of that part of world will correspondingly dominate
our conscious experience at time t. The FEP therefore can claim to provide a
grounded account of both the role attention plays in conscious experience, and
the role attention plays in the selection of features for subsequent action.
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Chapter 2

System: Implementation

2.1 Introduction

As our starting point, we will be using the model outlined in Karl Friston’s
’Perceptions as Hypotheses’ [22]. Our model deviates from Friston’s in that we
streamline much of the gradient descent process, and our saccades are modelled
as instantaneous. It is unclear whether they are or not in the original paper.

In addition, Friston simply evaluates the salience at the solutions to the
generative model, such that µx,q(t + τ) = µx,q(t). Our system minimises Free
Energy counterfactually to better simulate that disambiguating priors relies on
future expectations about not just the behaviour of those priors, but also of the
model itself. By computing the expected value of µx,q(t+ τ) separately for each
fictive point of foveation (see Section 2.4), we assume that the hierarchy that
we are approximating has expectations about its future states.

An additional distinction is that the original paper gives no indication as
to how errors between 256 element arrays are computed (each visual input
comprises 256 input channels). We took a mean square error approach which,
as we will discuss, raised several interesting issues with respect to preserving
certain structural aspects of sensory input.

As discussed in the introduction, we are intersted both in disambiguation
and empirical viability.. The first is investigated by equipping the system with
two priors, in this case a rectangle and a triangle, and then presenting an image
which would be expected to provoke a preference between the two (see Section
3.2/3.3). The image presented was Kanizsa’s Triangle, as in humans this pro-
vokes a strong visual experience of a triangle. The second scenario presented
an ambiguous image to the system, to create a bistable percept (see Section
3.4/3.5).
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2.2 The System

To build a program that minimises Free Energy we need to specify a generative
process GP , which describes how sense data is actually generated by the world,
and a generative model GM , which describes the brain’s model of how sense
data is generated with respect to its expectations.
Let us define our generative process as follows:

sp = xp + wp

sq = g(I, xp) + wq

ẋp = a− Cxp + wṗ

(2.1)

Here wp,wq and wṗ represent noise terms (not to be confused with ω, which
in Chapter 1 represented world states). xp (∈ R2) is the point of foveation in
2-D co-ordinates (for consistency with Matlab indexing we set [0,0] as the top
left corner of the image). sp (∈ R2) is the system’s proprioceptive input: the
system’s sense of where it is currently foveating. sq (∈ R256) is the visual or
perceptual input to the system, computed as a function of the image I and the
true point of foveation.

g(I, xp) returns a 16x16 array of real number values in the range [0,1]. Each
value corresponds to the output of a visual channel which outputs the maximum
of a DoG (difference of Gaussian) filter across 1/256th of 1/36th of the image.
This means the visual field itself covers 1/36th of the whole image. Performing
a convolution with a DoG filter is equivalent to running a band-pass filter over
the image, which permits only a certain range of spatial frequencies through.

DoG(σe, σi) =
[ 1√

2πσe

]
e
(− x2

2σ2e
) −

[ 1√
2πσi

]
e
(− x2

2σ2
i

)
(2.2)

The net result is to edge-detect, by virtue of detecting sharp local second order
changes in intensity, a task performed by ganglion cells in the retina in humans,
and analogous to error detection with respect to an expectation of local smooth-
ness [30]. With Friston, we have taken the ratio (σi/σe) = 4. A more common
ratio is ∼ 1.6 [33], but no difference was detected in our preliminary results,
and for ease of debugging, a whole number ratio of four pixels to one pixel was
retained. This preprocessing is simply intended to select only those parts of the
image most likely to be informationally dense.

a (∈ R2) is the action term; it denotes a vector of distance per time step, so
that when the system is integrated, the new point of foveation can be computed
by adding the vector a to the vector xp (plus some noise). C is a small constant,
and governs the decay of the point of foveation back to the centre of the image
if a = 0.

This division of sensory input into proprioceptive and visual signals results
in a generative model which can be thought of as two distinct processes, linked
only by the fact that the perceptual input is a function of the current point of
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foveation. We define the GM as follows:

Proprioception:

sp = µp + wvp

µ′p =
1

4
(µu − µp) + wxp

Perception:

sq =
∑
j

exp(µqj)g(Ij , µp) + wvq

µ′q = 1−
∑
j

exp(µqj) + wxq

(2.3)

Here, the top two equations are the system’s model of where it is looking, in
terms of input sp(∈ R2) and proprioceptive state µp(∈ R2). wxp and wvp are
noise terms, where the v subscript denotes the noise on a model of a causal state,
and x the noise on the model of a dynamic state (see sect). µu(∈ R2) is the
brain’s representation of some hidden control state u; this involves the further
subdivision of world states W such that W = V ×X × U . µu can be thought
of as the brain’s expectation about those hidden states of the world U (u ∈ U)
which can be affected by action to change sensory input [22]. For our purposes,
it is sufficient to note that µu acts as an attractor of the proprioceptive system;
the time derivative of µp is zero when µu = µp.

The bottom two equations are the system’s model of what it is seeing. wxq
and wvq are noise terms. The sensory input sq(∈ R256) is modelled by the
system as a weighted sum of prior expectations. These prior expectations are
computed by providing the system with a series of images which constitute its
world knowledge; priors on what it thinks the world might consist of. The
system then calculates for each prior what the expected input, g(Ij , µp), would
be assuming the same point of foveation µp for both prior image Ij and world
image I.

The weights, exp(µqj), can be thought of as the system’s prior estimate of the
probability that the jth expected image is actually the image being observed;
note that the dynamics of the system are modelled such that µ′q = 0 when∑
exp(µqj) = 1, where µ′q is the time derivative of µq according to the model,

which is distinct from the time derivative of µq derived from the gradient descent
(see Chapter 1). This means that the second part of the perceptual system
enacts a dynamic renormalisation that enforces that the sum of the weights is
approximately equal to 1. This is effectively a softmax probability [6], as the
approximate probability of any particular prior j can be computed as

p(j) =
exp(µj)∑
j

exp(µj)
(2.4)

Note the structural parallels with the distribution of a particular sub-density of
the recognition density q(ω) under the assumption that it can be factorized by
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timescale, as discussed in (1.15):

q∗i (ωi) =
e−Ei(ωi,s)∫
dωie−Ei(ωi,s)

Our priors are hierarchically flat; we are approximating the full activity of a
deep learning hierarchy with several images Ij and an associated state µqj .
From the parallel above we can postulate that the µqj term can be thought of
as representing the negative partially averaged energy of the full system state
that would, in the full hierarchy, be associated with that particular percept.
We are not here factorising by timescale, but applying similar independence
assumptions to particular sets of possible world states. This means we can treat
each µqj variable as orthogonal to the rest.

It is not clear if this is valid; whilst it makes the mathematics tractable, it
removes possible interdependencies which might contribute to disambiguation;
for example, the prior expectation that one object cannot occupy the same
space as another will be lacking from a model which assumes their statistical
independence. To compensate, our counterfactual computations assume that
the world is actually the current most likely prior; we enforce an expectation
that the world can only be in one state.

2.3 Minimising the Free Energy of the System

As we have shown in Chapter 1, to minimise Free Energy, we minimise the
variational energy, E , which is the negative log of the joint distribution of system
or brain states µ and sensory states s:

E(µ, s) = − ln p(µ, s) (2.5)

The simplest way to approach this is to think of E as a surface above µ and s.
To find a numerical approximation to a minimum we compute the gradient of
the surface ∇E at some initial point, and then take a small step in the direction
of the negative gradient. We then recompute the gradient at this new point,
and repeat. Assuming we choose our step size appropriately, and our function
is smooth, this will bring us close to a local minimum (for an excellent overview
of gradient descent, see [5], 263). For ease of computation, we will treat each
variable independently, and compute the gradient with respect to that variable.
Friston argues that the brain implements some variant of this gradient descent
approach [20].

Firstly, we will rewrite the generative distribution p(µ, s) in a more accessible
way. We assume that the two sensory states, sq and sp are independent, and
we will define µ̄p = {µ′p, µp} and µ̄q = {µ′q, µq}. This means, by Bayes’ Rule,
we can write

p(µ̄p/q) = p(µ′p/q, µp/q)

= p(µ′p/q|µp/q)p(µp/q)
(2.6)
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Rewriting p(µ, s), we get

p(µ, s) = p(s, µ)

= p(sp, sq, µ̄p, µ̄q)

Which, under Bayes’ Rule

= p(sp, sq|µ̄p, µ̄q)p(µ̄p, µ̄q)

As we have assumed the independence of sensory states,

= p(sp|µ̄p, µ̄q)p(sq|µ̄p, µ̄q)p(µ̄p, µ̄q)

We then note from the GM that sp is conditionally independent of µ̄q

= p(sp|µ̄p)p(sq|µ̄p, µ̄q)p(µ̄p, µ̄q)

Finally, we assume µ̄p and µ̄q are independent, and expand them as described
in (3.7):

= p(sp|µ̄p)p(sq|µ̄p, µ̄q)p(µ̄p)p(µ̄q)
= p(sp|µ′p, µp)p(sq|µ′p, µp, µ′q, µq)p(µ′p|µp)p(µp)p(µ′q|µq)p(µq)
= p(sp|µp)p(sq|µp, µq)p(µ′p|µp)p(µp)p(µ′q|µq)p(µq)
= p(sp|µp)p(sq|µp, µq)p(µ′p|µp)p(µ′q|µq) (2.7)

Here we have noted from the generative model that sp and sq are conditionally
independent of states of a higher dynamical order (µ′p,µ

′
q), and we have discarded

the priors for the reasons discussed in the simple generative model examined in
Chapter 1; that the system does not have prior expectations about its state at
any particular point in time, only about how that state might evolve.

Let us now assume that all four noise terms, wxp, wvp, wxq and wvq, are
Normally distributed, and run the four processes described by the generative
model around their respective means. This yields the following expressions for
the various conditional probabilities:

p(sp|µp) =
1√

2πΩvp
exp
(−(sp − µp)2

2Ωvp

)
p(sq|µp, µq) =

1√
2πΩvq

exp

(
−(sq −

∑
j exp(µqj)g(Ij , µp))

2

2Ωvq

)

p(µ′p|µp) =
1√

2πΩxp
exp
(−(µ′p − 1

4 (µu − µp))2

2Ωxp

)
p(µ′q|µq) =

1√
2πΩxq

exp
(−(µ′q − (1−

∑
j exp(µqj)))

2

2Ωxq

)
(2.8)
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Substituting (2.9) into (2.8) and subsequently (2.8) into (2.6) yields the following
expression (up to a constant) for the variational energy, where we have discarded
the 1/

√
2πΩ terms of the Gaussians as they do not affect the minimisation with

respect to µ and s:

E(µ, s) =
1

2Ωvp
ε2vp +

1

2Ωvq
ε2vq +

1

2Ωxp
ε2xp +

1

2Ωxq
ε2xq (2.9)

where

εvp = (sp − µp)

εvq = (sq −
∑
j

exp(µqj)g(Ij , µp))

εxp = (µ′p −
1

4
(µu − µp))

εxq = (µ′q − (1−
∑
j

exp(µqj)))

Note that the negative of the variational energy cancels with the negative of the
Gaussian distribution.

We will now make two simplifying assumptions. These are motivated because
our interest is in how minimising Free Energy drives disambiguatory sampling
of a visual image; we can approximate certain parts of the system as fast, which
means we do not need to integrate them directly. This saves conceptual and
computational space. The first assumption is that the saccades consist of a
fast stage (action) and a slow stage (perception). This means that we can
approximate the fast stage as instantaneous, and teleport the point of foveation
to µu (plus some noise) between each saccade. In effect, rather than providing a
forward model where we assume ẋp = 0 and integrate the proprioceptive system,
we can ignore the vp and xp terms entirely, and compute µu directly from the
salience map, as discussed in Section 2.4.

Secondly, we assume that the dynamic renormalisation is fast. This allows
us to discard the xq term from the variational energy, and approximate it by
enforcing

∑
j exp(µqj) = 1 at the end of every saccade. Removing these dynam-

ics allows us to set µ′q = 0, which means that we can perform gradient descent
without requiring the alternate derivative term to guarantee that the process
reaches a minimum (see Chapter 1).

This reduces us to the following system:

µ̇q1 = −κ1
∂E
∂µq1

µ̇q2 = −κ2
∂E
∂µq2

(2.10)

.

.
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Where µqi is the state associated with the ith prior, and κi is the learning rate
of the gradient descent, which was the same across all µqi. Note we do not need
to perform the minimisation with respect to µp, due to the assumptions detailed
above.

∂E
∂µqi

=
∂

∂µqi

( 1

2Ωvq
ε2vq

)
=

1

Ωvq
εvq

∂εvq
∂µqi

(2.11)

There is an important nuance in the coding of the derivative. To avoid
computing the minimisation with respect to every pixel, we reduced the percep-
tual error, εvq = (sq −

∑
j exp(µqj)g(Ij , µp)), to a single number by calculating

the mean square error (MSE) across all 256 individual channels. The εvq term
in (3.12) is therefore straightforward to compute. However, the derivative of
εvq cannot be reduced, as is generally the case (and as Friston describes in
the original paper) to ∂g(i)/∂µqi, where here g(i) =

∑
j exp(µqj)g(Ij , µp). This

is a result of the fact that MSE maps from R256 to R1; by doing so we lose
structural information that plays a role in determining the rate of change of
the error. To illustrate this, consider the simple two prior case below, when we
derive ∂E/∂µq1:

∂E
∂µq1

=
∂

∂µq1

(
sq −

∑
j

exp(µqj)g(Ij , µp)
)

=
∂

∂µq1

(
sq − exp(µq1)g(I1, µp)− exp(µq2)g(I2, µp)

)
=

∂

∂µq1

(
sq − exp(µq1)g(I1, µp)

)
=

∂

∂µq1

1

N

N∑
1

(
sqi − exp(µq1)gi(I1, µp)

)2
where N = 256 and sqi and gi denote the respective real valued inputs from the
ith channels, in the range [0,1].

= −exp(µq1)
2

N

N∑
1

(
sqi − exp(µq1)gi(I1, µp)

)
(2.12)

Here we are averaging across all 256 channels. The problem with this is that
for every channel where gi ' 0, the error for that channel will not change
if µq1 changes. By averaging all of the channels, however, we are implicitly
assuming that it will. Thus (2.13) is not the true expression for ∂E/∂µq1. To
approximate the true expression, we only count the error across those channels
where the value of gi is appreciably bigger than zero. We still divide by 256, to
encourage maximal information gain from each foveation.

The above constitutes the perception step of the dual minimisation discussed
in Chapter 1. We integrated the system for 16 time steps with a learning rate
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κ of 0.3 and an initial µp of [1500,1200], the approximate centre of the image.
We then calculated the next location to saccade by constructing a Salience
map. This location, µu, was then set (with the addition of a small amount
of noise) equal to µp, and to xp. The visual input sq was recalculated from
the generative process, and the next saccade begun. Constructing the Salience
map and recomputing µu can be thought of as the action step of the dual
minimisation, and will be discussed below.

2.4 Hidden Controls and Salience

Friston argues that we can approximate the action of a full hierarchy by mod-
elling the system as minimising the entropy expected across world states at
some future time (t + τ) [22]. The system selects the hidden control state, u,
represented by the system as µu accordingly:

µ∗u = argmin
µu

H
(
q(ω|µx,q(t+ τ), µu)

)
(2.13)

Where * denotes the optimal µu. Other than stating that the ’the fictive predic-
tion errors at each location were evaluated at their solution under the generative
model, namely: µx,q(t + τ) = µx,q(t)’, the original paper does not explain how
this is calculated. We have therefore taken our own approach.

Recall (Section 1.3) the central motivation behind Free Energy minimisation;
we are minimising a measure of the distance between two probability distribu-
tions, the recognition density and the generative density. If we assume that
the perception step has driven Free Energy to be a tight bound on surprise, it
follows that the generative density p(ω, s) can be used as a good approximation
to the recognition density, q(ω). This means that we can use the states µqi,
which are the sufficient statistics of the generative density, as a way to calculate
an approximation to the entropy of the recognition density.

In addition, we assume that the only possible world states (as far as the sys-
tem is concerned) correspond to the priors, so that they represent the complete
knowledge the system has of the world (we can assume that in a full biological
system the subdivision of the world into just these prior expected states would
have been learned). This means that q(ω) is a discrete probability distribution
across the priors. As we have enforced

∑
j exp(µqj) = 1, we take exp(µqj) to

be the softmax probability of the jth prior. Thus we can estimate the entropy
of q(ω) as follows:

H(q(ω)) = −exp(µq1)µq1 − exp(µq2)µq2 ...− exp(µqM )µqM (2.14)

Where M is the number of priors.
To compute the entropy of the recognition density conditioned on some fu-

ture states, q(ω|µx,q(t+τ), µu), as with Friston, we constructed a map of salience
S for a 32x32 grid of possible µu, i.e. possible points of foveation, across the
image. Salience is the negative of the entropy, H. For each point k we performed
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a fictive integration for τ of 8 time steps, with sq = g(IB , µuk), where IB is the
prior with the highest value µqB , i.e. the system’s current best guess at the state
of the world. We then used the states of the system after the fictive integration,
{µq1(t+ τ)...µqM (t+ τ)} to estimate the expected salience at that µuk at time
(t+ τ).

To drive the actual saccades, as with Friston we introduced an inhibition of
return, which depressed the salience S at any particular point i at saccade k
according to

Si,k = Si,k − (Si,k ×Ri,k−1)

Ri,k−1 = ρ(Si,k−1) +
1

2
Ri,k−2

(2.15)

where ρ(Si,k) is a gaussian function, with a standard deviation 1/16 the size of
the image, of the distance of i from the target of the kth saccade. Finally, µ∗u
was then taken to be the highest point on the salience map (as argmax S =
argmin H), and the next point of foveation.

Assuming that the agent acts to minimise the entropy of world states comes
directly, for Friston, as a necessary consequence of their existence [17]. In ad-
dition, if we recall that under ergodic assumptions the entropy of word states
is the same as the long term average of surprise (1.10), and we note that by
minimising Free Energy (as − ln p(µ, s)) we are at each time step minimising
an upper bound on the surprise of sensory states, we can see that foveating the
point of greatest expected future salience is equivalent to the minimisation of
Free Energy. Note that by itself acting to foveate the most salient features of
an image is equivalent to infomax, a pre-existing model of efficient action which
Friston has shown to be a specific case of the FEP, given a sparse prior [20].
For us, the main difference is that our salience is counterfactual, derived by
minimising Free Energy with respect to fictive sensory inputs.

By integrating into the future with respect to an expected (but fictional)
sensory input, we are assuming that our priors model counterfactual aspects of
the world. Thus, for the system, where it will look next is in part a function
of what its current state leads it to believe about what the world will be like
at some future time (t+ τ). We could think of this counterfactual information
in the real hierarchy as being encoded in the dynamical equations of motion,
f (i), at each hierarchical layer. The main point is that the information gathered
by foveating a local part of the image drives an expectation about, i.e. selects
states µqi that correspond to, a particular global image. If we take our conscious
experience to be a function of our current brain states, then it is hoped that
this salience map captures something of the gestalt phenomenology that we
experience, top down, as incoming sensory data from a small part of the world
drives brain states to a Free Energy minimum.
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Chapter 3

System: Evaluation and
Discussion

3.1 Introduction

Here we present our investigations into (A) how exactly a Free Energy min-
imising system would act to disambiguate between competing prior expecta-
tions, and (B) whether the simplifications required to make a computationally
tractable model rendered the resultant system empirically worthless. We follow
each with a discussion of the implications and limitations of the investigation,
along with suggestions for future investigation.

3.2 Disambiguation of Priors

We ran the system with an input image of Kanizsa’s Triangle, and two priors:
one rectangle, and one triangle (Fig. 3.1).

(a) Kanizsa’s Triangle (b) Triangle Prior (c) Rectangle Prior

Figure 3.1: Image and priors for investigation of disambiguation.

Examination of the salience maps driving each saccade shows the system to
be acting to test negative hypotheses: once the system has decided it is looking
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at a triangle, the salience map (Fig. 3.2(b)) restricts itself to those parts of the
image where a square would be if it were wrong.

(a) Saccades (b) Driving Salience Map

Figure 3.2: Nine-saccade examination of Kanizsa’s Triangle, and associated
salience map. Saccades 1-9 are driven by map top-left to bottom-right.

This was theorised to be due to a larger contribution to µ̇qj from nega-
tive results than from positive (see (2.13)), combined with the renormalisation∑
j µqj = 1 at each stage (see discussion at the end of p27). This was due to a

combination of factors which meant that for those channels where the prior and
the image agreed, they generally agreed fully. This resulted in a zero or near
zero error value, and thus no contribution to ∂E/∂µqj . Hence, the locations on
the salience map that drove µq1 and µq2 apart most rapidly (and thus max-
imise salience by creating the most peaked distribution q(ω)) were those where
there should be the most absent information about the other prior - the system
expects to gain the most information by confirming its negative expectations.

To test this, we examined the situation where the system was given the tri-
angle prior as its input image. Because the priors are two simple shapes, the
resultant salience maps are easy to distinguish. Figure 3.3 shows the disconfir-
matory case. As we can see, the system became steadily more convinced that
it was looking at a triangle, but its pattern of sampling was a combination of
disconfirmatory and disambiguatory; the latter because it was somewhat inter-
ested in those areas near the intersections of the edges of the priors. This is
because there was some positive contribution from those places where the prior
and the image did not agree fully, so µ̇q1 would be slightly positive, which drove
µq1 slightly further from µq2 than a large negative µ̇q2 by itself (assuming µq1
and µq2 correspond to triangle and rectangle priors respectively).

Secondly, we set the system up so that the weighting contribution exp(µqj)
(see 2.13) was such that unless the system was fully convinced that it was looking
at the jth prior, there would still be a large enough positive contribution to the
respective µ̇qj to offset negative contributions from the competing prior. We
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(a) Saccades (b) Driving Salience Map

(c) Derived probability of world states
(R=Triangle, B=Rectangle)

(d) sq : sensory input

Figure 3.3: Nine-saccade when disconfirming system presented with a triangle.

can see the results for a nine-saccade run in Figure 3.4. As with Figure 3.3(c),
the system becomes steadily more convinced that it is looking at a triangle (at
about the same rate). However, we can see that it is now primarily acting to
disambiguate; it foveates the bottom corner of the triangle and the two points of
intersection between the sides of the priors. We can hypothesise that the bottom
corner is the most appealing initial saccade due to the fact that it contains two
intersections, and therefore the most disambiguatory information.

Interestingly, disambiguation still appears to rate much more highly than
confirmation. Whilst we can see in Figure 3.4(b) that the system is willing to
consider sampling to confirm its current hypothesis, i.e. to sample the sides of
the triangle, it still expects to receive more useful information at the points of
intersection. We could expect to see confirmatory saccades only if the inhibition
of return were to last long enough (and be large enough) that the three main
peaks on the salience map, once foveated, remained suppressed long enough for
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(a) Saccades (b) Driving Salience Map

(c) Derived probability of world states
(R=Triangle, B=Rectangle)

(d) sq : sensory input

Figure 3.4: Nine-saccade when disambiguating system presented with a triangle.

other sampling to promise more information.
Finally, it should be noted that in the salience maps, the top edge is never

expected to provide salient information. This is a consequence of the fact that
the top edges of the two priors coincide, and so no useful information will be
forthcoming.

3.3 Disambiguation Discussion

These results have interesting implications. If we are correct to approximate
the action which best minimises Free Energy as that which maximises salience,
and our other simplifications are valid, then we can make a hypothesis about
the likely points of foveation if we prime a subject with simple priors. We
can hypothesise that the first few targets of saccades will be those locations
which most disambiguate. However, according to our model, if the subject
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becomes convinced that what they are seeing is indeed a particular prior (in our
terms, if for a particular j, µqj ≈ 1), then the positive contribution to that µ̇qj
will be close to zero, and they would be expected to sample to disconfirm the
alternative.

There are two large caveats to this hypothesis. Firstly, it will only hold
if our GM , (2.3) is indeed a reasonable approximation to the workings of a
full predictive hierarchy. This seems unlikely; having a single state approximate
some set of various brain states that contribute to a particular gestalt experience
is useful for our purposes of drawing graphs, but almost certainly fails to capture
exactly what is going on in the brain. What, for example, is the neural correlate
to this sort of disambiguation? With respect to a constructed PP hierarchy,
what would be the multilayer correlate to the single state µqj?

Secondly, disconfirmation may be a result of having only two priors. Con-
sider that we calculate salience as the weighted sum of the negative surprise
of each prior (2.15). With two priors, a sharply peaked distribution can be
achieved by either depressing the probability of the prior we consider to be
wrong, or increasing the probablity of that we take to be correct. This cor-
responds to disconfirming or confirming. However, with multiple priors, given
we may only sample one part of the image at a time, it is almost always going
to be more efficient to sample to confirm, because increasing the probability of
our current expectation will depress the probabilities of all of the other priors
(due to normalisation). Acting to disconfirm will only be effective in the case
where most alternatives coincide at a specific point; so that foveating that point
will simultaneously depress the posterior probabilities of multiple competing
inferences.

In short, we think that it is necessary to model both the case of multiple
priors, and for those priors to be the product of a full predictive hierarchy, before
results can be produced which would have a good claim to be human-like.

3.4 Distribution of rate of percept alternation

To examine whether our non-hierarchical, two-prior model was empirically use-
ful, we set it up to compare to a well known result in cognitive psychology; that
in the temporal dynamics of bistable perception, the durations of percepts fol-
low a gamma distribution [8]. This phenomenon is usually grounded in neural
mechanics, but as Friston explicitly draws close parallels between his account
of the FEP and the neuronal activity of the brain [20], we do not consider it
unreasonable to see whether this characteristic behaviour is simulated by a Free
Energy minimising model.

Initially we attempted to simulate the bistable image using the classic Ru-
bin’s Vase illusion (Fig. 3.5). However, due to our priors being hierarchically
flat, there was no way to provide the system with a sense of which prior was
which, as the driving ambiguity of the illusion is the fact that a single line can
be seen as contributing to the evidence for two distinct gestalts. Recall however
that the counterfactual salience maps in the Kanizsa case assigned no value to
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(a) Rubin’s Vase (b) Faces Prior (c) Vase Prior

Figure 3.5: Bistable: Rubin’s Vase and Priors.

the top edge, which was shared by the two priors (Fig 3.3(b),3.4(b)). Similarly
here, the system presupposes no information will be gleaned from the shared
line, and so will not be driven to it.

We attempted to distinguish the priors by adding more information to the
’faces’ in the one case and the ’vase’ in the other (in the form of lines), however
the system simply foveated the area of most information (see Fig. 3.6), and
failed to settle into a properly bistable regime. We therefore moved on from
Rubin’s Vase.

(a) Saccades (b) Driving Salience Map

Figure 3.6: Nine-saccade examination of Rubin’s Vase, and associated salience
map. Saccades 1-9 are driven by map top-left to bottom-right.

To take into account the limitations of our hierarchically flat priors, we
instead constructed an image and prior pair so that the image would provide
roughly equal evidence for both priors, such that the interaction of the saccades
with the minimisation should result in the system alternating its inference on
the causes of its sensory input (see Fig. 3.7). We ran the system with this input
image and these priors for an initial nine saccades, to confirm that the resultant
system did indeed alternate between percepts (Fig. 3.8).

Having built a bistable system, we ran it for 200 saccades, and produced a
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(a) Ambiguous Image (b) First Prior (c) Second Prior

Figure 3.7: Bistable: Hierarchically Flat Ambiguity

(a) Saccades (b) Derived probability of world states
(R=Triangle, B=Rectangle)

Figure 3.8: Nine-saccade for hierarchically flat bistable system

histogram of the duration of percepts. By dividing through by the area of each
bar, we obtained an approximation to the pdf of the rate of alternation (Fig.
3.9). As can be seen, this is not a gamma distribution.

3.5 Bistability discussion

The attempt to use Rubin’s vase to simulate a case of bistable perception of-
fered an interesting insight into bistable perception under the FEP account. It
highlights that these phenomena probably require the presence of a hierarchy,
as a single level of ambiguity can possess no salience; the system will sample
anywhere but the ambiguous region. The ’gestalt flip’ that characterises our
phenomenal experience when we are presented with such images is likely due to
the fact that ambiguities between larger structures only emerge at high levels of
abstraction in the hierarchy. The Rubin’s vase figure is not locally ambiguous -
a line is just a line - it is only with respect to high level priors of things like faces
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Figure 3.9: Distribution of Percept Duration after 200 saccade run

that the ambiguity emerges. Indeed, it can also be seen as evidence of action to
confirm; because as we have shown, neither disconfirmation nor disambiguation
would involve the foveation of the ambiguous region.

Thus it is the interplay of expectations across the hierarchy that must give
rise to the perceptual bistability experienced by humans. Sensory signals prompt
a particular high-level prior, which causes proprioceptive expectations to flow
down and drive action. This action gathers evidence that promotes a competing
expectation, whilst also confirming the original expectation. Further action to
confirm the original may result in no more evidence (if we look for facial features
where there are none, for example), and so the second prior then supplants the
first.

If this account is correct, then it is unsurprising that a simulation of Free
Energy minimisation without a full hierarchy failed to produce the expected
gamma distribution. As with our investigations into disambiguating priors, we
are limited by the same two oversimplifications.

37



Conclusion

Our system does not understand structure, and our system thinks that the
world is effectively binary. Compensating for these limitations would provide
potentially interesting results. Building a hierarchy would allow the system to
simulate both an understanding of structure and the dynamical delays we hy-
pothesise are the result of the interactions between high level priors and low
level action. Adding more priors should, as discussed in Section 3.3, move the
action of the system from disconfirmation/disambiguation to confirmation/dis-
ambiguation.

On a more positive note, our modelling has provided fertile ground for inves-
tigation into the way in which the FEP could drive the disambiguation of priors.
We have shown that counterfactual PP is computationally tractable, and that
the results provide some insight into how minimising Free Energy drives action.
In addition, we have made minor hypotheses about a suitably primed subject’s
likely targets of foveation when presented with Kanizsa’s triangle.

As discussed, the FEP’s attraction is in the claims it makes to unite phe-
nomena as wide ranging as consciousness and action [17][13]. It is the belief
of the author that understanding intelligence requires understanding the in-
formational constraints placed upon an organism as a driving force behind its
evolution. Thinking of organisms as experimenters, constantly sampling and
updating, poised between exploitation and exploration [21], between overfitting
and underfitting, is a very appealing way to approach this. We hope that our
deconstruction of the workings of Free Energy minimisation at the level of active
inference has provided an interesting and stimulating read.
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Appendix: Code

1 c l e a r a l l
2 c l o s e a l l
3

4 %i n i t i a l i s e image and p r i o r s − MUST BE SAME SIZE ; o f
images provided , s e t s

5 %are
6 %{CrossOvals . png , HorzOval . png , VertOval . png } ,{Rubin . png ,

Vase2 . png , f a c e s . png } ,
7 %and {KaniszaBig . png , KaniszaBig2 . png , Tr i ang l ePr i o r . png ,

Rectang lePr io r . png } .
8 %Note m i s p e l l i n g o f Kanizsa was to d i f f e r e n t i a t e with a

d i f f e r e n t s e t o f
9 %images .

10 F1 = f s p e c i a l ( ’ gauss ian ’ , 5 , 1 ) ;%D i f f e r e n c e o f Gaussian
f i l t e r .

11 F2 = f s p e c i a l ( ’ gauss ian ’ , 5 , 4 ) ;
12 DoG = F1−F2 ;
13

14 preImage = imread ( ’ KaniszaBig . png ’ ) ;%Image
15 greyImage = rgb2gray ( preImage ) ;
16 ImageSmall = conv2 ( double ( greyImage ) ,DoG, ’ v a l i d ’ ) ;
17 [ Image , transIm ] = margin ( ImageSmall ) ;
18

19 ims i z e = s i z e ( Image ) ;
20

21 prePr io r1 = imread ( ’ Tr i ang l ePr i o r . png ’ ) ;%F i r s t p r i o r
22 greyPr io r1 = rgb2gray ( prePr io r1 ) ;
23 Prior1Smal l = conv2 ( double ( g reyPr io r1 ) ,DoG, ’ v a l i d ’ ) ;
24 [ Pr ior1 , transP1 ] = margin ( Pr ior1Smal l ) ;
25

26 prePr io r2 = imread ( ’ Rectang lePr ior . png ’ ) ;%Second p r i o r
27 greyPr io r2 = rgb2gray ( prePr io r2 ) ;
28 Prior2Smal l = conv2 ( double ( g reyPr io r2 ) ,DoG, ’ v a l i d ’ ) ;
29 [ Pr ior2 , transP2 ] = margin ( Pr ior2Smal l ) ;
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30

31 %i n i t i a l i s e system
32 numsaccades = 9 ;
33 saccade l ength = 16 ;
34 tau = 8 ;%c o u n t e r f a c t u a l i n t e g r a t i o n l ength
35

36 x p = [ f l o o r ( ims i z e (1 ) /2) f l o o r ( ims i z e (2 ) /2) ] ’ ;%true
p r o p r i o c e p t i v e s t a t e s

37

38 s p = x p + [ f l o o r (10∗ randn (1 ) ) f l o o r (10∗ randn (1 ) ) ] ’ ;%
perceptua l s t a t e s : assuming some no i s e

39 s q = G( Image , x p ) ; %+ f l o o r ( randn (1 ) /30) ; − s q no i s e
terms c u r r e n t l y suppressed due to chao t i c behaviour o f

system .
40

41 mu p = s p ;%expected p r o p r i o c e p t i v e s t a t e s
42 mu p dash = ze ro s (2 , 1 ) ;
43

44 mu q = [−0.6931 −0 .6931 ] ’ ;%expected perceptua l s t a t e s ;
i n i t i a l i s e at approx p(P1)=p(P2) =0.5

45 mu q dash = ze ro s (2 , 1 ) ;
46

47 prec is ionVP = 8 ;%p r e c i s i o n s in F (how c e r t a i n the system
i s o f i t s models )

48 prec is ionXP = 8 ;
49 precis ionVQ = 4 ;
50 precis ionXQ = 4 ;
51

52 %Saccades
53 s a c cad e s t o r e = ze ro s (2 , numsaccades ) ;
54 probscore = ze ro s (2 , numsaccades ) ;
55 p o i n t l i s t = [16 1 6 ] ’ ;
56 mapl i s t = ze ro s (32 , (32∗ numsaccades ) ) ;
57 s t a t e p r o g r e s s = ze ro s ( 2 , ( numsaccades∗ saccade l ength +1) ) ;
58 s t a t e p r o g r e s s ( : , 1 ) = exp (mu q) ;
59 f o r i = 1 : numsaccades
60 s a c cad e s t o r e ( : , i ) = mu p ;
61 %percept i on step : minimise FE to a t i g h t bound
62 [ mu q , mu q dash , s t a t e s ] = i n t ( s q , mu q , mu q dash , mu p

, Prior1 , Prior2 , saccade l ength ) ;
63 probscore ( : , i ) = exp (mu q) ;
64 %act i on step : act to minimise s u r p r i s e o f sensory

input , g iven model
65 [ mu u , p o i n t l i s t , map ] = computeU (mu q , mu q dash , Prior1

, Prior2 , tau , transIm , p o i n t l i s t ) ;
66 mu p = mu u +[ f l o o r (10∗ randn (1 ) ) f l o o r (10∗ randn (1 ) )
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] ’ ;%adding some no i s e to t e l e p o r t .
67 s q = G( Image , mu p) ;% + f l o o r ( randn (1 ) /30) ;
68 %reco rd ing the s a l i e n c e maps
69 f o r j = 1 :32
70 f o r k = 1:32
71 mapl i s t ( j , ( k+32∗( i −1) ) ) = map( j , k ) ;
72 end
73 end
74 %reco rd ing the s t a t e s
75 s t a t e p r o g r e s s ( : , ( ( ( i −1)∗ saccade l ength ) +2:( i ∗

saccade l ength ) +1) ) = s t a t e s ;
76 i %− uncomment t h i s i f doing a long run : he lp s keep

track o f how i t ’ s
77 %running . One saccade i s approx 40 seconds on 16GB RAM

.
78 end
79

80 %Imaging . Note f i g (2 ) and f i g (4 ) only work with exac t l y
9 saccades ; w i l l

81 %r e q u i r e adjustment or commenting out i f running f o r
fewer or more . f i g (5 )

82 %i s s e t up f o r long runs .
83 f i g u r e (1 )
84 imshow ( preImage ) ;
85 coords = ze ro s (2 , numsaccades ) ;
86 f o r i =1: numsaccades
87 f o r j =1:2
88 coords ( j , i ) = sa c ca de s t o r e ( j , i )−transIm ( j , 1 ) ;
89 end
90 end
91 hold on
92 p lo t ( coords ( 2 , : ) , coords ( 1 , : ) , ’−bo ’ , ’ MarkerSize ’ ,10) ;
93

94 f i g u r e (2 )
95 f o r k = 1 :9
96 im = ze ro s (32 ,32) ;
97 f o r i =1:32
98 f o r j =1:32
99 im( i , j ) = mapl i s t ( i , ( j +32∗(k−1) ) ) ;

100 subplot (3 , 3 , k )
101 imshow ( im)
102 end
103 end
104 end
105

106 f i g u r e (3 )
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107 x = s t a t e p r o g r e s s ( 1 , : ) ;
108 y = s t a t e p r o g r e s s ( 2 , : ) ;
109 p lo t (x , ’ r ’ )
110 hold on
111 p lo t (y , ’b ’ )
112 ylim ( [ 0 1 ] )
113 f o r d= 1 : numsaccades
114 x = ( saccade l ength ) ∗(d) +1;
115 p lo t ( [ x x ] , [ 0 1 ] , ’ : k ’ )
116 end
117 x l a b e l ( ’ I t e r a t i o n s ’ ) ;
118 y l a b e l ( ’ Estimated p r o b a b i l i t y o f percept ’ ) ;
119

120 f i g u r e (4 )
121 f o r k = 1 :9
122 image = G( Image , s a c cade s t o r e ( : , k ) ) ;
123 subplot (3 , 3 , k )
124 imshow ( image )
125 end
126

127 %f i g u r e (5 )
128 l = s i z e ( s t a t e p r o g r e s s ) ;
129 sp = ze ro s (2 , l ( 2 ) ) ;
130 sp ( 1 , : ) = s t a t e p r o g r e s s ( 1 , : ) +0.05;%ad ju s t i ng as image

b iased s l i g h t l y towards one percept
131 sp ( 2 , : ) = s t a t e p r o g r e s s ( 2 , : ) −0.05;
132 l = l (2 ) ;
133 PD = [ ] ;%don ’ t know in advance number o f switches , so

cannot p r e a l l o c a t e .
134 count = 0 ;
135 s co r e = 0 ;
136 f o r z = 1 : l
137 top = sp (1 , z ) ;
138 bottom = sp (2 , z ) ;
139 i f z==l
140 i f count ˜= 0
141 PD = [PD count ] ;
142 end
143 e l s e i f top == bottom
144 i f s c o r e == 1
145 PD = [PD count ] ;
146 count = 0 ;
147 s co r e = 0 ;
148 e l s e i f s c o r e == −1
149 PD = [PD count ] ;
150 count = 0 ;
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151 s co r e = 0 ;
152 end
153 e l s e i f top > bottom
154 i f s c o r e == 1
155 count = count +1;
156 e l s e i f s c o r e == −1
157 PD = [PD count ] ;
158 count = 1 ;
159 s co r e = 1 ;
160 e l s e i f s c o r e == 0
161 s co r e = 1 ;
162 count = 1 ;
163 end
164 e l s e i f bottom > top
165 i f s c o r e == 0
166 s co r e = −1;
167 count = 1 ;
168 e l s e i f s c o r e == −1
169 count = count + 1 ;
170 e l s e i f s c o r e == 1
171 PD = [PD count ] ;
172 count = 1 ;
173 s co r e = −1;
174 end
175 end
176 end
177 %[ f , x ] = h i s t (PD, 4 0 ) ;
178 %bar (x , f / t rapz (x , f ) ) ;
179 %x l a b e l ( ’ Percept Duration t ’ ) ;
180 %y l a b e l ( ’P( t ) ’ ) ;

1 f unc t i on [ MarginImage , t r a n s l a t i o n ] = margin ( image )
2 %Margin b u i l d s a margin o f b lackspace around the o r i g i n a l

image , so that
3 %f o v e a t i n g near to the edge o f an image does not throw

index out o f bounds
4 %e r r o r s .
5

6 ims i z e = s i z e ( image ) ;
7 Vincrease = f l o o r ( ims i z e (1 ) ∗ (3/2) ) ;%c r e a t i n g margins , to

avoid index ing e r r o r s
8 Hincrease = f l o o r ( ims i z e (2 ) ∗ (3/2) ) ;
9 imageL = ze ro s ( Vincrease , Hincrease ) ;

10 marginTop = f l o o r ( ims i z e (1 ) ∗ (1/4) ) ;
11 marginLeft = f l o o r ( ims i z e (2 ) ∗ (1/4) ) ;
12 t r a n s l a t i o n = [ marginTop marginLeft ] ’ ;
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13 f o r i = 1 : ims i z e (1 )
14 f o r j = 1 : ims i z e (2 )
15 imageL ( marginTop+i , marginLeft+j ) = image ( i , j ) ;
16 end
17 end
18

19 MarginImage = imageL ;
20 end

1 f unc t i on [ output ] = G( image , l o c a t i o n )
2 %G return s a 256 element vec to r where each element

corresponds to a v i s u a l
3 %channel d i s p l a c e d a c r o s s a g r id 1/6 o f the s i z e o f the

o r i g i n a l image (1/9 the
4 %s i z e o f the margined image ) centred on the l o c a t i o n .
5

6 PoF = l o c a t i o n ;%Point o f f o v e a t i o n
7 ims i z e = s i z e ( image ) ;
8 %imshow ( image , ’ I n i t i a l M a g n i f i c a t i o n ’ , 2 5 ) ;
9 v e r t i c a l f o v = f l o o r ( ims i z e (1 ) /9) ;

10 h o r i z o n t a l f o v = f l o o r ( ims i z e (2 ) /9) ;
11 FoVdim = [ v e r t i c a l f o v h o r i z o n t a l f o v ] ’ ;%Fie ld o f view

dimension
12

13

14 %imshow ( imageL , ’ I n i t i a l M a g n i f i c a t i o n ’ , 1 7 ) ;
15 t o p l e f t = PoF − FoVdim . / 2 ;%Top l e f t o f f i e l d o f view
16 v i sua l Input = ze ro s (16) ;
17

18 minVI = I n f ;
19 maxVI = −I n f ;
20 f o r i = 1 :16
21 f o r j = 1 :16
22 %e x t r a c t channel area ( note a l r eady DoG f i l t e r e d

in MainRun) .
23 i ndexver t = c e i l ( t o p l e f t (1 ) +( i −1)∗( v e r t i c a l f o v

/16) ) : f l o o r ( t o p l e f t (1 ) +( i ) ∗( v e r t i c a l f o v /16) ) ;
24 indexhorz = c e i l ( t o p l e f t (2 ) +(j−1)∗( h o r i z o n t a l f o v

/16) ) : f l o o r ( t o p l e f t (2 ) +( j ) ∗( h o r i z o n t a l f o v /16) )
;

25 c h a n n e l i j = image ( indexvert , indexhorz ) ;
26 v i sua l Input ( i , j ) = max(max( c h a n n e l i j ) ) ;
27 i f v i sua l Input ( i , j ) > maxVI
28 maxVI = v i sua l Input ( i , j ) ;
29 e l s e i f v i sua l Input ( i , j ) < minVI
30 minVI = v i sua l Input ( i , j ) ;
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31 end
32 end
33 end
34

35 %i f (max( v i sua l Input ( : ) ) − min ( v i sua l Input ( : ) ) )>0.001%
prevent minute rounding e r r o r s from producing v e s t i g a l

e f f e c t s .
36 %vi sua l Input = ( v i sua l Input−min ( v i sua l Input ( : ) ) ) /(max

( v i sua l Input ( : ) )−min ( v i sua l Input ( : ) ) ) ;
37 %end
38 %output = v i sua l Input ;
39 output = im2bw( v i sua l Input ) ;%binary ( channel i s

i n f o rmat ive / isn ’ t ) can g ive b e t t e r runs , in some
c i rcumstances .

40 %imshow ( output ) ;
41 end

1 f unc t i on [ mu q new , mu q dash new , s t a t e s ] = i n t ( s q , mu q ,
mu q dash , mu p , P1 , P2 , i t e r a t i o n s )

2 %Int i n t e g r a t e s the pe rceptua l system by one time−step ,
accord ing to the

3 %minimisat ion o f E ( the v a r i a t i o n a l energy ) with r e s p e c t
to each mu s t a t e .

4 %Note i n t does not i n t e g r a t e the p r o p r i o c e p t i v e system ,
as we are

5 %approximating that i n t e g r a t i o n as ’ f a s t ’ . Dynamic
i n t e g r a t i o n ( i n v o l v i n g mu qi dash s t a t e s ) has been

6 %commented out f o r the ac tua l run .
7

8 k = 0 . 3 ;%l e a r n i n g ra t e
9

10 der iv mu qi = @( e1 , dG d mu qi ) 4∗ e1 ∗( dG d mu qi ) ;%−4∗e2 ∗(
exp ( mu qi ) ) −(1/1024) ∗4∗ e2∗mu qi ;

11 %der iv mu qi dash = @( e2 ) 4∗ e2 ;
12

13 s t a t e s = ze ro s (2 , i t e r a t i o n s ) ;
14

15 f o r j = 1 : i t e r a t i o n s
16 mu q1 = mu q (1) ;
17 mu q2 = mu q (2) ;
18 %mu q1 dash = mu q dash (1 ) ; mu q2 dash = mu q dash (2 )

;% s p l i t t i n g the s t a t e s to r e s p e c t i v e p r i o r s
19

20 expectedQ = exp ( mu q1 ) .∗G(P1 , mu p)+exp ( mu q2 ) .∗G(P2 ,
mu p) ;

21 error mu q = s q u a r e d i f f ( s q , expectedQ ) ;%causa l e r r o r
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terms are the same f o r a l l p r i o r s t a t e s
22 dG d mu q1 = dG( s q , mu q1 , mu p , P1) ;%ra t e o f change o f

e r r o r with r e s p e c t to v i s u a l s t a t e s mu q
23 dG d mu q2 = dG( s q , mu q2 , mu p , P2) ;
24

25 %error mu q1 dash = mu q1 dash − 1 + exp ( mu q1 )+exp (
mu q2 ) +(1/1024)∗mu q1;% f i r s t p r i o r dynamic e r r o r

26 %error mu q2 dash = mu q2 dash − 1 + exp ( mu q1 )+exp (
mu q2 ) +(1/1024)∗mu q2;%second p r i o r dynamic e r r o r

27

28 mu q1 = mu q1 + k∗ der iv mu qi ( error mu q , dG d mu q1 ) ;
%+mu q1 dash;%update by grad i en t descent

29 mu q2 = mu q2 + k∗ der iv mu qi ( error mu q , dG d mu q2 ) ;
%+mu q2 dash ;

30

31 %mu q1 dash = mu q1 dash − k∗ der iv mu qi dash (
error mu q1 dash ) ;%update dynamic model

32 %mu q2 dash = mu q2 dash − k∗ der iv mu qi dash (
error mu q2 dash ) ;

33

34 norma l i s e r = exp ( mu q1 )+exp ( mu q2 ) ;%renorma l i s e
s t a t e s ( i f dynamic renorma l i s a t i on , no need to do
t h i s )

35 ex1 = exp ( mu q1 ) / norma l i s e r ;
36 ex2 = exp ( mu q2 ) / norma l i s e r ;
37 mu q1 = log ( ex1 ) ;
38 mu q2 = log ( ex2 ) ;
39

40 s t a t e s (1 , j ) = exp ( mu q1 ) ;%record causa l s t a t e s f o r
p l o t t i n g

41 s t a t e s (2 , j ) = exp ( mu q2 ) ;
42

43 mu q (1) = mu q1 ;%recombine causa l s t a t e s
44 mu q (2) = mu q2 ;
45

46 %mu q dash (1 ) = mu q1 dash;%recombine dynamic s t a t e s
47 %mu q dash (2 ) = mu q2 dash ;
48 end
49

50 mu q new = mu q ;
51 mu q dash new = mu q dash ;
52 end

1

2 f unc t i on [U, p o i n t l i s t 2 , map ] = computeU ( mu q , mu q dash ,
Prior1 , Prior2 , tau , t r a n s l a t i o n , p o i n t l i s t )
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3 %This gene ra t e s a S a l i e n c e map a c r o s s the image , and
re tu rn s the

4 %co−o r d i n a t e s o f the h i ghe s t po int on the map .
5

6 mu q1 = mu q (1) ;
7 mu q2 = mu q (2) ;
8 t rans1 = t r a n s l a t i o n (1 ) ;
9 t rans2 = t r a n s l a t i o n (2 ) ;

10 i f mu q1 >= mu q2%pick ing what the system th inks i s the
r e a l world

11 f i c t i v e i m a g e = exp ( mu q1 ) ∗Prior1 ;
12 e l s e
13 f i c t i v e i m a g e = exp ( mu q2 ) ∗Prior2 ;
14 end
15 ims i z e = s i z e ( f i c t i v e i m a g e ) ;
16 vertgap = ims i z e (1 ) /51 ;%1/34 o f pre−margined image
17 horzgap = ims i z e (2 ) /51 ;
18

19 Umap = ze ro s (32 ,32 ,3 ) ;%F i r s t l a y e r s t o r e s s a l i e n c e values
, second two s t o r e co−o r d i n a t e s .

20

21 f o r i =1:32
22 f o r j =1:32
23 mu u = [ trans1+i ∗ vertgap trans2+j ∗horzgap ] ’ ;%

compute f i c i t v e f o v e a t i o n
24 Umap( i , j , 2 ) = mu u (1) ;
25 Umap( i , j , 3 ) = mu u (2) ;
26 s q = G( f i c t i v e i m a g e , mu u) ;%compute f i c t i v e

pe rceptua l input
27 [ f icmu q , f i cmu q dash ] = i n t ( s q , mu q , mu q dash ,

mu u , Prior1 , Prior2 , tau ) ;%c o u n t e r f a c t u a l
i n t e g r a t i o n

28 f icmu q1 = ficmu q (1) ;
29 f icmu q2 = ficmu q (2) ;
30 s a l i e n c e = ( exp ( f icmu q1 ) ∗ f icmu q1 + exp ( f icmu q2

) ∗ f icmu q2 ) ;
31 Umap( i , j , 1 ) = s a l i e n c e ;%bu i l d in g the s a l i e n c e map

.
32 end
33 end
34

35 salmax = −I n f ;%convert s a l i e n c e map to range 0−1, f o r
ease o f v iewing .

36 salmin = I n f ;
37 f o r i =1:32
38 f o r j =1:32
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39 i f Umap( i , j , 1 )>salmax
40 salmax = Umap( i , j , 1 ) ;
41 end
42 i f Umap( i , j , 1 )<salmin
43 sa lmin = Umap( i , j , 1 ) ;
44 end
45 end
46 end
47

48 ump = Umap( : , : , 1 ) ;
49 ump = (ump−salmin ) /( salmax−sa lmin ) ;
50 %imshow (ump) ;
51

52 %suppres s map to s imulate i n h i b i t i o n o f re turn .
53 gauss = @( gap ) 1/(2∗ s q r t ( p i ) ) ∗exp (−(( gap ) ˆ2) /4) ;
54 s = s i z e ( p o i n t l i s t ) ;
55 h i s t l e n = s (2 ) ;
56 f o r i =1:32
57 f o r j =1:32
58 t o t a l = 0 ;
59 f o r k = 1 : h i s t l e n
60 h i s t i = p o i n t l i s t (1 , k ) ;
61 h i s t j = p o i n t l i s t (2 , k ) ;
62 dev = max ( [ abs ( h i s t i−i ) , abs ( h i s t j−j ) ] ) ;
63 i f and ( dev < 5 , k==h i s t l e n )
64 t o t a l = t o t a l + gauss ( dev ) ;
65 e l s e i f dev < 5
66 t o t a l = t o t a l + ( 0 . 5 ˆ ( h i s t l e n−k ) ) ∗ gauss (

dev ) ;
67 end
68 end
69 p i x e l = ump( i , j ) ;
70 p i x e l = p i x e l ∗(1−(3)∗ t o t a l ) ;
71 ump( i , j ) = p i x e l ;
72 end
73 end
74

75 b e s t i j = ze ro s (2 , 1 ) ;%compute max U a c r o s s Map.
76 maximum = −I n f ;
77 f o r i =1:32
78 f o r j =1:32
79 i f ump( i , j )>maximum
80 maximum = ump( i , j ) ;
81 b e s t i j ( 1 ) = i ;
82 b e s t i j ( 2 ) = j ;
83 end
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84 end
85 end
86

87 I = b e s t i j ( 1 ) ;
88 J = b e s t i j ( 2 ) ;
89 IJ = [ I J ] ’ ;
90 p o i n t l i s t 2 = horzcat ( p o i n t l i s t , IJ ) ;
91 U = [Umap( I , J , 2 ) Umap( I , J , 3 ) ] ’ ;
92 map = ump;
93 end

1 f unc t i on [ dGout ] = dG( senseq , mu q , mu p , Pr io r )
2 %dG retu rn s a s c a l a r cor re spond ing to the non l in ea r

approximation to the
3 %rate o f change o f the e r r o r with r e s p e c t to a p a r t i c u l a r

p r i o r image .
4

5 pview = G( Prior , mu p) ;
6 count = 0 ;
7 der ro r = 0 ;
8 f o r i = 1 :16
9 f o r j = 1 :16

10 i f pview ( i , j ) > 0 %igno r ing those p i x e l s f o r
which an i n c r e a s e in mu q w i l l not con t r i bu t e
to an i n c r e a s e in dG/dmu q

11 d e r r o r i j = senseq ( i , j ) − exp (mu q) ∗pview ( i , j ) ;
12 der ro r = der ro r + d e r r o r i j ;
13 count = count + 1 ;
14 end
15 end
16 end
17

18 i f d e r ro r == 0%avo id ing i n f i n i t e dG
19 der ro r = der ro r ;
20 e l s e
21 der ro r = der ro r /256 ;
22 end
23

24 %max(max( senseq ) ) ;
25 %max(max( pview ) ) ;
26 dGout = der ro r ∗exp (mu q) ;
27 end

1 f unc t i on [ d i f f e r e n c e ] = s q u a r e d i f f ( array1 , array2 )
2 %s q u a r e d i f f computes the l e a s t squares d i f f e r e n c e between

two separa te arrays ,
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3 %and re tu rn s a s i n g l e s c a l a r va lue . Separated from the
r e s t o f the run f o r

4 %convenience wrt t ry ing d i f f e r e n t measures o f d i s t anc e .
5

6 S1 = s i z e ( array1 ) ;
7 S2 = s i z e ( array2 ) ;
8 sim = i s e q u a l ( S1 , S2 ) ;
9

10 i f sim == 0%check they are the same s i z e f i r s t
11 e r r o r ( ’ Arrays submitted to s q u a r e d i f f are unequal ’ ) ;
12 e l s e
13 e r r o r s = array1−array2 ;
14 d i f f = mean(mean( e r r o r s . ˆ 2 ) ) ;
15 end
16

17 d i f f e r e n c e = d i f f ;
18 end
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